Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114035, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573859

RESUMEN

Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.


Asunto(s)
Bombyx , Animales , Ligandos , Bombyx/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Sitios de Unión , Secuencia de Aminoácidos , Modelos Moleculares , Unión Proteica , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/química , Receptores Odorantes/metabolismo , Receptores Odorantes/química
2.
J Exp Biol ; 226(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382467

RESUMEN

Animals commonly use thermosensation, the detection of temperature and its variation, for defensive purposes: to maintain appropriate body temperature and to avoid tissue damage. However, some animals also use thermosensation to go on the offensive: to hunt for food. The emergence of heat-dependent foraging behavior has been accompanied by the evolution of diverse thermosensory organs of often exquisite thermosensitivity. These organs detect the heat energy emitted from food sources that range from nearby humans to trees burning in a forest kilometers away. Here, we examine the biophysical considerations, anatomical specializations and molecular mechanisms that underlie heat-driven foraging. We focus on three groups of animals that each meet the challenge of detecting heat from potential food sources in different ways: (1) disease-spreading vector mosquitoes, which seek blood meals from warm-bodied hosts at close range, using warming-inhibited thermosensory neurons responsive to conductive and convective heat flow; (2) snakes (vipers, pythons and boas), which seek warm-blooded prey from ten or more centimeters away, using warmth-activated thermosensory neurons housed in an organ specialized to harvest infrared radiation; and (3) fire beetles, which maximize their offspring's feeding opportunities by seeking forest fires from kilometers away, using mechanosensory neurons housed in an organ specialized to convert infrared radiation into mechanosensory stimuli. These examples highlight the diverse ways in which animals exploit the heat emanating from potential food sources, whether this heat reflects ongoing metabolic activity or a recent lightning strike, to secure a nutritious meal for themselves or for their offspring.


Asunto(s)
Escarabajos , Culicidae , Animales , Calor , Mosquitos Vectores , Serpientes
3.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37036394

RESUMEN

The advent of CRISPR/Cas9-mediated genome editing has expanded the range of animals amenable to targeted genetic analysis. This has accelerated research in animals not traditionally studied using molecular genetics. However, studying genes essential for reproduction or survival in such animals remains challenging, as they lack the tools that aid genetic analysis in traditional genetic model organisms. We recently introduced the use of distinguishably marked knock-in pairs (DMKPs) as a strategy for rapid and reliable genotyping in such species. Here we show that DMKPs also facilitate the maintenance and study of mutations that cannot be maintained in a homozygous state, a group which includes recessive lethal and sterile mutations. Using DMKPs, we disrupt the zero population growth locus in Drosophila melanogaster and in the dengue vector mosquito Aedes aegypti. In both species, DMKPs enable the maintenance of zero population growth mutant strains and the reliable recovery of zero population growth mutant animals. Male and female gonad development is disrupted in fly and mosquito zero population growth mutants, rendering both sexes sterile. In Ae. aegypti, zero population growth mutant males remain capable of inducing a mating refractory period in wild-type females and of competing with wild-type males for mates, properties compatible with zero population growth serving as a target in mosquito population suppression strategies. DMKP is readily generalizable to other species amenable to CRISPR/Cas9-mediated gene targeting, and should facilitate the study of sterile and lethal mutations in multiple organisms not traditionally studied using molecular genetics.


Asunto(s)
Aedes , Infertilidad , Animales , Masculino , Femenino , Drosophila melanogaster/genética , Mosquitos Vectores , Reproducción/genética , Aedes/genética
4.
Neuron ; 111(6): 874-887.e8, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640768

RESUMEN

To reproduce and to transmit disease, female mosquitoes must obtain blood meals and locate appropriate sites for egg laying (oviposition). While distinct sensory cues drive each behavior, humidity contributes to both. Here, we identify the mosquito's humidity sensors (hygrosensors). Using generalizable approaches designed to simplify genetic analysis in non-traditional model organisms, we demonstrate that the ionotropic receptor Ir93a mediates mosquito hygrosensation as well as thermosensation. We further show that Ir93a-dependent sensors drive human host proximity detection and blood-feeding behavior, consistent with the overlapping short-range heat and humidity gradients these targets generate. After blood feeding, gravid females require Ir93a to seek high humidity associated with preferred egg-laying sites. Reliance on Ir93a-dependent sensors to promote blood feeding and locate potential oviposition sites is shared between the malaria vector Anopheles gambiae and arbovirus vector Aedes aegypti. These Ir93a-dependent systems represent potential targets for efforts to control these human disease vectors.


Asunto(s)
Anopheles , Malaria , Animales , Humanos , Femenino , Oviposición , Humedad , Mosquitos Vectores , Conducta Alimentaria
5.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187590

RESUMEN

Gustatory Receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors. However, GR structures have not been experimentally determined. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect Olfactory Receptors (ORs). Upon fructose binding, BmGr9's ion channel gate opens through helix S7b movements. In contrast to ORs, BmGR9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also unlike ORs, fructose binding by BmGr9 involves helix S5 and a binding pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with distinct ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.

6.
Elife ; 102021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33504427

RESUMEN

Enhanced levels of dietary magnesium improve long-term memory in fruit flies.


Asunto(s)
Magnesio , Memoria a Largo Plazo
7.
Curr Biol ; 30(16): 3167-3182.e4, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32619476

RESUMEN

Animals exhibit innate and learned preferences for temperature and humidity-conditions critical for their survival and reproduction. Leveraging a whole-brain electron microscopy volume, we studied the adult Drosophila melanogaster circuitry associated with antennal thermo- and hygrosensory neurons. We have identified two new target glomeruli in the antennal lobe, in addition to the five known ones, and the ventroposterior projection neurons (VP PNs) that relay thermo- and hygrosensory information to higher brain centers, including the mushroom body and lateral horn, seats of learned and innate behavior. We present the first connectome of a thermo- and hygrosensory neuropil, the lateral accessory calyx (lACA), by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. A few mushroom body-intrinsic neurons solely receive thermosensory input from the lACA, while most receive additional olfactory and thermo- and/or hygrosensory PN inputs. Furthermore, several classes of lACA-associated neurons form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a hub for thermo- and hygrosensory circuitry. For example, DN1a neurons link thermosensory PNs in the lACA to the circadian clock via the accessory medulla. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron targeted by dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor circuits. These data provide a comprehensive first- and second-order layer analysis of Drosophila thermo- and hygrosensory systems and an initial survey of third-order neurons that could directly modulate behavior.


Asunto(s)
Conectoma , Drosophila melanogaster/fisiología , Neuronas/metabolismo , Neurópilo/metabolismo , Células Receptoras Sensoriales/metabolismo , Sinapsis/fisiología , Termorreceptores/metabolismo , Animales , Femenino , Neuronas/citología , Vías Olfatorias
8.
Science ; 367(6478): 681-684, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32029627

RESUMEN

Mosquitoes transmit pathogens that kill >700,000 people annually. These insects use body heat to locate and feed on warm-blooded hosts, but the molecular basis of such behavior is unknown. Here, we identify ionotropic receptor IR21a, a receptor conserved throughout insects, as a key mediator of heat seeking in the malaria vector Anopheles gambiae Although Ir21a mediates heat avoidance in Drosophila, we find it drives heat seeking and heat-stimulated blood feeding in Anopheles At a cellular level, Ir21a is essential for the detection of cooling, suggesting that during evolution mosquito heat seeking relied on cooling-mediated repulsion. Our data indicate that the evolution of blood feeding in Anopheles involves repurposing an ancestral thermoreceptor from non-blood-feeding Diptera.


Asunto(s)
Anopheles/fisiología , Temperatura Corporal , Evolución Molecular , Conducta de Búsqueda de Hospedador/fisiología , Calor , Receptores Ionotrópicos de Glutamato/fisiología , Termorreceptores/fisiología , Animales , Anopheles/genética , Sangre , Femenino , Ratones , Mutación , Receptores Ionotrópicos de Glutamato/genética
9.
Proc Natl Acad Sci U S A ; 113(40): 11342-11347, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27638213

RESUMEN

The ability to sense heat is crucial for survival. Increased heat tolerance may prove beneficial by conferring the ability to inhabit otherwise prohibitive ecological niches. This phenomenon is widespread and is found in both large and small animals. For example, ground squirrels and camels can tolerate temperatures more than 40 °C better than many other mammalian species, yet a molecular mechanism subserving this ability is unclear. Transient receptor potential vanilloid 1 (TRPV1) is a polymodal ion channel involved in the detection of noxious thermal and chemical stimuli by primary afferents of the somatosensory system. Here, we show that thirteen-lined ground squirrels (Ictidomys tridecemlineatus) and Bactrian camels (Camelus ferus) express TRPV1 orthologs with dramatically reduced temperature sensitivity. The loss of sensitivity is restricted to temperature and does not affect capsaicin or acid responses, thereby maintaining a role for TRPV1 as a detector of noxious chemical cues. We show that heat sensitivity can be reengineered in both TRPV1 orthologs by a single amino acid substitution in the N-terminal ankyrin-repeat domain. Conversely, reciprocal mutations suppress heat sensitivity of rat TRPV1, supporting functional conservation of the residues. Our studies suggest that squirrels and camels co-opt a common molecular strategy to adapt to hot environments by suppressing the efficiency of TRPV1-mediated heat detection at the level of somatosensory neurons. Such adaptation is possible because of the remarkable functional flexibility of the TRPV1 molecule, which can undergo profound tuning at the minimal cost of a single amino acid change.


Asunto(s)
Camelus/fisiología , Sciuridae/fisiología , Canales Catiónicos TRPV/metabolismo , Termotolerancia , Vías Aferentes/efectos de los fármacos , Vías Aferentes/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Repetición de Anquirina , Capsaicina/farmacología , Secuencia Conservada , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Calor , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/efectos de los fármacos , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Alineación de Secuencia , Canales Catiónicos TRPV/química , Termotolerancia/efectos de los fármacos , Xenopus/metabolismo
10.
Proc Natl Acad Sci U S A ; 112(5): 1607-12, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605929

RESUMEN

Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as -2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation. The molecular mechanisms that underlie this adaptation remain unknown. We report, using differential transcriptomics alongside immunohistologic and biochemical analyses, that neurons from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) express mitochondrial uncoupling protein 1 (UCP1). The expression changes seasonally, with higher expression during hibernation compared with the summer active state. Functional and pharmacologic analyses show that squirrel UCP1 acts as the typical thermogenic protein in vitro. Accordingly, we found that mitochondria isolated from torpid squirrel brain show a high level of palmitate-induced uncoupling. Furthermore, torpid squirrels during the hibernation season keep their brain temperature significantly elevated above ambient temperature and that of the rest of the body, including brown adipose tissue. Together, our findings suggest that UCP1 contributes to local thermogenesis in the squirrel brain, and thus supports nervous tissue function at low body temperature during hibernation.


Asunto(s)
Hibernación , Canales Iónicos/fisiología , Proteínas Mitocondriales/fisiología , Neuronas/metabolismo , Termogénesis , Animales , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Sciuridae , Proteína Desacopladora 1
11.
Temperature (Austin) ; 2(2): 214-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27227025

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible mechanisms of TRPA1 activation.

12.
Proc Natl Acad Sci U S A ; 111(52): E5670-7, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512509

RESUMEN

In single-cell eukaryotes the pathways that monitor nutrient availability are central to initiating the meiotic program and gametogenesis. In Saccharomyces cerevisiae an essential step in the transition to the meiotic cycle is the down-regulation of the nutrient-sensitive target of rapamycin complex 1 (TORC1) by the increased minichromosome loss 1/ GTPase-activating proteins toward Rags 1 (Iml1/GATOR1) complex in response to amino acid starvation. How metabolic inputs influence early meiotic progression and gametogenesis remains poorly understood in metazoans. Here we define opposing functions for the TORC1 regulatory complexes Iml1/GATOR1 and GATOR2 during Drosophila oogenesis. We demonstrate that, as is observed in yeast, the Iml1/GATOR1 complex inhibits TORC1 activity to slow cellular metabolism and drive the mitotic/meiotic transition in developing ovarian cysts. In iml1 germline depletions, ovarian cysts undergo an extra mitotic division before meiotic entry. The TORC1 inhibitor rapamycin can suppress this extra mitotic division. Thus, high TORC1 activity delays the mitotic/meiotic transition. Conversely, mutations in Tor, which encodes the catalytic subunit of the TORC1 complex, result in premature meiotic entry. Later in oogenesis, the GATOR2 components Mio and Seh1 are required to oppose Iml1/GATOR1 activity to prevent the constitutive inhibition of TORC1 and a block to oocyte growth and development. To our knowledge, these studies represent the first examination of the regulatory relationship between the Iml1/GATOR1 and GATOR2 complexes within the context of a multicellular organism. Our data imply that the central role of the Iml1/GATOR1 complex in the regulation of TORC1 activity in the early meiotic cycle has been conserved from single cell to multicellular organisms.


Asunto(s)
Proteínas de Drosophila/metabolismo , Meiosis/fisiología , Oocitos/metabolismo , Oogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Antibacterianos/farmacología , Proteínas de Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Meiosis/efectos de los fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oocitos/citología , Oogénesis/efectos de los fármacos , Sirolimus/farmacología , Factores de Transcripción/genética
13.
Curr Top Membr ; 74: 89-112, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25366234

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflammation, pain, circadian rhythms, chemoreception, and other processes. Some of these proposed functions remain controversial, while others have gathered considerable experimental support. A truly polymodal ion channel, TRPA1 is activated by various stimuli, including electrophilic chemicals, oxygen, temperature, and mechanical force, yet the molecular mechanism of TRPA1 gating remains obscure. In this review, we discuss recent advances in the understanding of TRPA1 physiology, pharmacology, and molecular function.


Asunto(s)
Sensación Térmica , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Humanos , Canales de Potencial de Receptor Transitorio/química
14.
Proc Natl Acad Sci U S A ; 111(41): 14941-6, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25246547

RESUMEN

Relying almost exclusively on their acute sense of touch, tactile-foraging birds can feed in murky water, but the cellular mechanism is unknown. Mechanical stimuli activate specialized cutaneous end organs in the bill, innervated by trigeminal afferents. We report that trigeminal ganglia (TG) of domestic and wild tactile-foraging ducks exhibit numerical expansion of large-diameter mechanoreceptive neurons expressing the mechano-gated ion channel Piezo2. These features are not found in visually foraging birds. Moreover, in the duck, the expansion of mechanoreceptors occurs at the expense of thermosensors. Direct mechanical stimulation of duck TG neurons evokes high-amplitude depolarizing current with a low threshold of activation, high signal amplification gain, and slow kinetics of inactivation. Together, these factors contribute to efficient conversion of light mechanical stimuli into neuronal excitation. Our results reveal an evolutionary strategy to hone tactile perception in vertebrates at the level of primary afferents.


Asunto(s)
Patos/fisiología , Conducta Alimentaria , Mecanotransducción Celular , Neuronas/fisiología , Tacto/fisiología , Animales , Regulación hacia Abajo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Umbral Sensorial , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo , Termorreceptores/metabolismo , Ganglio del Trigémino/fisiología , Regulación hacia Arriba
15.
J Inorg Biochem ; 140: 104-10, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25105866

RESUMEN

The X-linked inhibitor of apoptosis protein (XIAP) is a zinc metalloprotein that has recently been implicated in copper homeostasis. XIAP mediates apoptosis via the inhibition of caspase enzymes through multiple baculovirus IAP repeat (BIR) domains, wherein zinc is coordinated by three cysteine amino acids and one histidine amino acid. XIAP binds copper ions directly at one or more unspecified sites, indicating that the protein may function as a copper sensor. We report the copper-binding properties of an XIAP construct containing the BIR2 and BIR3 domains. Absorption and emission spectroscopic measurements show that XIAP exhibits only a low-to-moderate affinity for Cu(II), but a strong affinity for Cu(I). Cu(I) is observed to bind at multiple sites within the BIR2 and BIR3 domains, including the CXXC motifs of the zinc structural sites and multiple BIR2 surface sites. Mutagenesis-based experiments reveal that surface cysteine residues mediate binding in the BIR2 domain and induce protein oligomerization under elevated copper concentrations. These results constitute the first spectroscopic evidence of copper-XIAP interactions.


Asunto(s)
Cobre/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Secuencia de Aminoácidos , Cobre/química , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Proteína Inhibidora de la Apoptosis Ligada a X/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...